Abstract
Introduction: Functional asymmetries are largely related to receptive, comprehensive and expressive language localization in the left cerebral hemisphere and to arithmetic, spatial and other receptive attributes in the right cerebral hemisphere. The anatomical asymmetries are numerous and include the overall size and shape of the two hemispheres, the gyral/sulcal patterns, the length, width and height distances, the anteroposterior protrusion (petalia) of the hemispheres, as well as a variety of regional gray and white matter structures. Objective: The main objective of the present study was to investigate brain asymmetries in humans. Method: A search was carried out in the main online libraries such as Elsevier, PubMed, DOAJ, SpringerLink, etc. Results: Once the search was initiated, we used the inclusion and exclusion criteria, and then each article was reviewed individually in order to assess possible biases. The theoretical advantages of lateralization have been proposed to include: (i) increasing the brain's ability to perform multiple tasks simultaneously; (ii) avoiding unnecessary duplication of functions and thus maximizing the space available for neural tissue; (iii) increasing processing speed due to reduced interhemispheric communication through the corpus callosum; and (iv) preventing the onset of incompatible responses in the two hemispheres. Conclusions: Although central asymmetries can be manipulated by chronic insults such as stress or lateralized peripheral pain, studies that include longitudinal and/or acute manipulations of function are still required.
References
H Z, Tang T, Z Y. White matter asymmetries in patients with cerebral small vessel disease. J Integr Neurosci [Internet]. 2018 [citado 20 de enero de 2022];17(2). Disponible en: https://pubmed.ncbi.nlm.nih.gov/29526848/
Corballis MC. Chapter 7 - Evolution of cerebral asymmetry. En: Hofman MA, editor. Progress in Brain Research [Internet]. Elsevier; 2019 [citado 20 de enero de 2022]. p. 153-78. (Evolution of the Human Brain: From Matter to Mind; vol. 250). Disponible en: https://www.sciencedirect.com/science/article/pii/S0079612319301177
Corballis MC. The Evolution of Lateralized Brain Circuits. Front Psychol. 16 de junio de 2017;8:1021.
Vannucci RC, Heier LA, Vannucci SJ. Cerebral asymmetry during development using linear measures from MRI. Early Hum Dev. 1 de diciembre de 2019;139:104853.
Esteves M, Ganz E, Sousa N, Leite-Almeida H. Asymmetrical Brain Plasticity: Physiology and Pathology. Neuroscience. 1 de febrero de 2021;454:3-14.
Güntürkün O, Ströckens F, Ocklenburg S. Brain Lateralization: A Comparative Perspective. Physiol Rev [Internet]. 1 de abril de 2020 [citado 20 de enero de 2022]; Disponible en: https://journals.physiology.org/doi/abs/10.1152/physrev.00006.2019
Esteves M, Lopes SS, Almeida A, Sousa N, Leite-Almeida H. Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol. 1 de septiembre de 2020;192:101823.
Germann J, Petrides M, Chakravarty MM. Hand preference and local asymmetry in cerebral cortex, basal ganglia, and cerebellar white matter. Brain Struct Funct. 1 de noviembre de 2019;224(8):2899-905.
Habib M. Anatomical Asymmetries of the Human Cerebral Cortex. Int J Neurosci. 1 de enero de 2015;47(1-2):67-80.
Corballis MC, Häberling IS. The Many Sides of Hemispheric Asymmetry: A Selective Review and Outlook. J Int Neuropsychol Soc. octubre de 2017;23(9-10):710-8.
Chen Z, Zhao X, Fan J, Chen A. Functional cerebral asymmetry analyses reveal how the control system implements its flexibility. Hum Brain Mapp. 17 de julio de 2018;39(12):4678-88.
Fu L, Wang Y, Fang H, Xiao X, Xiao T, Li Y, et al. Longitudinal Study of Brain Asymmetries in Autism and Developmental Delays Aged 2–5 Years. Neuroscience. 15 de abril de 2020;432:137-49.
Kavaklioglu T, Guadalupe T, Zwiers M, Marquand AF, Onnink M, Shumskaya E, et al. Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct. 2017;222(4):1611-23.
Kong XZ, Mathias SR, Guadalupe T, Glahn DC, Franke B, Crivello F, et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U S A. 29 de mayo de 2018;115(22):E5154-63.
Ramirez-Carmona R, Garcia-Lazaro HG, Dominguez-Corrales B, Aguilar-Castañeda E, Roldan-Valadez E. Main effects and interactions of cerebral hemispheres, gender, and age in the calculation of volumes and asymmetries of selected structures of episodic memory. Funct Neurol. 10 de enero de 2017;31(4):257-64.
Richards R, Greimel E, Kliemann D, Koerte IK, Schulte-Körne G, Reuter M, et al. Increased hippocampal shape asymmetry and volumetric ventricular asymmetry in autism spectrum disorder. NeuroImage Clin. 5 de febrero de 2020;26:102207.
Kamson DO, Pilli VK, Asano E, Jeong JW, Sood S, Juhász C, et al. Cortical Thickness Asymmetries and Surgical Outcome in Neocortical Epilepsy. J Neurol Sci. 15 de septiembre de 2016;368:97.
Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry. octubre de 2016;21(10):1460-6.
Wachinger C, Salat DH, Weiner M, Reuter M. Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain. diciembre de 2016;139(12):3253-66.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Fernanda Aguilar-Cobeña, Vanessa Moreira-Cantos, Katherin Guillín-Villagran