Human papillomavirus, uterine cervical cancer and epigenetic modifications
pdf (Español (España))

Keywords

human papillomavirus
cervical cáncer
epigenetics modification

How to Cite

Román-Collazo, C., Merchán-Jara, M. J., Andrade-Campoverde, D., Campoverde-Valverde, E., & Guaillazaca -Matute, L. (2019). Human papillomavirus, uterine cervical cancer and epigenetic modifications. Revista Estudiantil CEUS (Ciencia Estudiantil Unidad De Salud), 1(2), 11-18. Retrieved from https://ceus.ucacue.edu.ec/index.php/ceus/article/view/13

ARK

http://resolve.scienceontheweb.net/ark:/89949/ceus.v1i2.13

Abstract

Cervical cancer is the fourth most common cause of death in women in the world according to World Cancer Report reports. Its pathophysiological is diverse although the main etiological agent is considered to be Human Papilloma Virus (VPH). Although VPH infection is identified as necessary for the development of CC, it is not sufficient for this. There are several hypotheses that attempt to explain the origin of the disease with the influence of the environment and the genetics and epigenetics of the individual. The article systematizes the relationship between VPH, epigenetic modifications, and cervical cancer from VPH infection. VPH infection in susceptible subjects causes changes in cellular epigenetic regulation mechanisms. The expression of viral oncogenic proteins enhances the mechanisms of uncontrolled cell proliferation and inhibits the apoptotic and control mechanisms of the cell cycle. The epigenetic landscape of the pathophysiology of VPH in cervical uterine cancer is promising and sees possible targets to direct treatment for infection and disease. However, some limitations such as the diversity of epigenetic mechanisms involved in VPH pathogenesis without being able to attribute the weight of each in the generation of carcinogenic transformation will be noted. Intermediaries in molecular signaling pathways that may be key in understanding pathogenesis are still unknown. Limitations of in vitro studies using transfected heterogeneous cell lines without achieving VPH infection should be addressed.

pdf (Español (España))

References

BW S, CP W, editores. World Cancer Report 2014 [Internet]. Suiza: WHO; 2014 [citado 3 de octubre de 2019]. (World Cancer Reports). Disponible en: http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014

Sen P, Ganguly P, Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett [Internet]. enero de 2018 [citado 18 de enero de 2019];15(1):11-22. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738689/

Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer [Internet]. 2017 [citado 21 de enero de 2019];123(12):2219-29. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/cncr.30588

Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: A global health crisis. Cancer [Internet]. 2017 [citado 3 de octubre de 2019];123(13):2404-12. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/cncr.30667

Harden ME, Munger K. HUMAN PAPILLOMAVIRUS MOLECULAR BIOLOGY. Mutat Res [Internet]. 2017 [citado 22 de abril de 2019];772:3-12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500221/

Zhao J, Guo Z, Wang Q, Si T, Pei S, Wang C, et al. Human papillomavirus genotypes associated with cervical precancerous lesions and cancer in the highest area of cervical cancer mortality, Longnan, China. Infect Agent Cancer [Internet]. 25 de enero de 2017 [citado 22 de abril de 2019];12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264338/

Vu M, Yu J, Awolude OA, Chuang L. Cervical cancer worldwide. Current Problems in Cancer [Internet]. 1 de septiembre de 2018 [citado 3 de octubre de 2019];42(5):457-65. Disponible en: http://www.sciencedirect.com/science/article/pii/S014702721830134X

Feng C, Dong J, Chang W, Cui M, Xu T. The Progress of Methylation Regulation in Gene Expression of Cervical Cancer. Int J Genomics [Internet]. 16 de abril de 2018 [citado 18 de enero de 2019];2018. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926518/

Burd EM. Human Papillomavirus Laboratory Testing: the Changing Paradigm. Clin Microbiol Rev [Internet]. abril de 2016 [citado 22 de abril de 2019];29(2):291-319. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786885/

Willemsen A, Bravo IG. Origin and evolution of papillomavirus (onco)genes and genomes. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 27 de mayo de 2019 [citado 3 de octubre de 2019];374(1773):20180303. Disponible en: https://royalsocietypublishing.org/doi/full/10.1098/rstb.2018.0303

Soto D, Song C, McLaughlin-Drubin ME. Epigenetic Alterations in Human Papillomavirus-Associated Cancers. Viruses [Internet]. 1 de septiembre de 2017 [citado 2 de mayo de 2019];9(9). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618014/

Human papillomavirus DNA in surgical smoke during cervical loop electrosurgical excision procedures and its impact on the surgeon [Internet]. [citado 28 de mayo de 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499148/

JIMÉNEZ-WENCES H, PERALTA-ZARAGOZA O, FERNÁNDEZ-TILAPA G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep [Internet]. junio de 2014 [citado 18 de febrero de 2019];31(6):2467-76. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055305/

Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol [Internet]. 18 de abril de 2016 [citado 17 de enero de 2019];17. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834828/

Cáncer cérvicouterino y virus del papiloma humano. Rev Chil Obstet Ginecol - Buscar con Google [Internet]. [citado 19 de enero de 2019]. Disponible en: https://www.google.com/search?q=C%C3%A1ncer+c%C3%A9rvicouterino+y+virus+del+papiloma+humano.+Rev+Chil+Obstet+Ginecol&rlz=1C1SQJL_esEC786EC786&oq=C%C3%A1ncer+c%C3%A9rvicouterino+y+virus+del+papiloma+humano.+Rev+Chil+Obstet+Ginecol&aqs=chrome..69i57.755j0j4&sourceid=chrome&ie=UTF-8

Aspectos generales sobre la estructura y función de las proteínas codificadas por el virus del Papiloma Humano/ General aspects about the structure and function of the proteins encoded by the Human Papillomavirus | Revista CENIC Ciencias Biológicas [Internet]. [citado 3 de junio de 2019]. Disponible en: https://revista.cnic.edu.cu/revistaCB/articulos/aspectos-generales-sobre-la-estructura-y-funci%C3%B3n-de-las-prote%C3%ADnas-codificadas-por-el-virus

Santos-López G, Márquez-Domínguez L, Reyes-Leyva J, Vallejo-Ruiz V. Aspectos generales de la estructura, la clasificación y la replicación del virus del papiloma humano. Rev Med Inst Mex Seguro Soc [Internet]. 2015;53(2):S166-71. Disponible en: https://www.redalyc.org/articulo.oa?id=457744942008

Negrín S, G J. Virus del Papiloma humano. Revista de Ciencias Médicas de Pinar del Río [Internet]. diciembre de 2009 [citado 4 de junio de 2019];13(4):168-87. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1561-31942009000400019&lng=es&nrm=iso&tlng=es

Cáncer cérvicouterino y virus del papiloma humano [Internet]. [citado 23 de mayo de 2019]. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-75262012000400014

Travé G, Zanier K. HPV-mediated inactivation of tumor suppressor p53. Cell Cycle [Internet]. 2016;15(17):2231. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004678/pdf/kccy-15-17-1191257.pdf

Pontillo A, Bricher P, Leal VNC, Lima S, Souza PRE, Crovella S. Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development. J Med Virol. 2016;88(9):1646-51.

Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, Gómez-Macias GS, Fajardo-Ramírez OR, Treviño V, et al. Understanding the HPV integration and its progression to cervical cancer. Infection, Genetics and Evolution [Internet]. 1 de julio de 2018 [citado 30 de septiembre de 2019];61:134-44. Disponible en: http://www.sciencedirect.com/science/article/pii/S156713481830090X

Kgatle MM, Spearman CW, Kalla AA, Hairwadzi HN. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations. Oxid Med Cell Longev [Internet]. 2017 [citado 28 de septiembre de 2019];2017. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504953/

Reyes HD, Thiel KW, Carlson MJ, Meng X, Yang S, Stephan J-M, et al. Comprehensive Profiling of EGFR/HER Receptors for Personalized Treatment of Gynecologic Cancers. Mol Diagn Ther [Internet]. abril de 2014 [citado 21 de enero de 2019];18(2):137-51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969446/

Tan SC, Ismail MP, Duski DR, Othman NH, Ankathil R. Prevalence and type distribution of human papillomavirus (HPV) in Malaysian women with and without cervical cancer: an updated estimate. Biosci Rep [Internet]. 29 de marzo de 2018 [citado 4 de junio de 2019];38(2). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874263/

2811-2815-Study-on-the-effect-of-Integrin-αVβ6-on-proliferation-and-apoptosis-of-cervical-cancer-cells.pdf [Internet]. [citado 28 de septiembre de 2019]. Disponible en: https://www.europeanreview.org/wp/wp-content/uploads/2811-2815-Study-on-the-effect-of-Integrin-%CE%B1V%CE%B26-on-proliferation-and-apoptosis-of-cervical-cancer-cells.pdf

de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, zur Hausen H. Classification of papillomaviruses. Virology. 20 de junio de 2004;324(1):17-27.

Bedregal P, Shand B, Santos MJ, Ventura-Juncá P. Aportes de la epigenética en la comprensión del desarrollo del ser humano. Revista médica de Chile [Internet]. marzo de 2010 [citado 19 de agosto de 2019];138(3):366-72. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0034-98872010000300018&lng=es&nrm=iso&tlng=es

Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases [Internet]. [citado 19 de enero de 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618938/

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev [Internet]. 1 de abril de 2009 [citado 24 de julio de 2019];23(7):781-3. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959995/

Morgado-Pascual JL, Marchant V, Rodrigues-Diez R, Dolade N, Suarez-Alvarez B, Kerr B, et al. Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediators Inflamm [Internet]. 13 de diciembre de 2018 [citado 21 de enero de 2019];2018. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311799/

Naidoo V, Naidoo M, Ghai M. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scandinavian Journal of Immunology [Internet]. 2018 [citado 21 de enero de 2019];88(6):e12723. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/sji.12723

De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) [Internet]. 17 de enero de 2018 [citado 21 de enero de 2019];9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776102/

Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson’s Disease [Internet]. [citado 21 de enero de 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487993/

Toh TB, Lim JJ, Chow EK-H. Epigenetics in cancer stem cells. Mol Cancer [Internet]. 1 de febrero de 2017 [citado 21 de enero de 2019];16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286794/

Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: Moving forward. PLOS Genetics [Internet]. 7 de junio de 2018 [citado 28 de septiembre de 2019];14(6):e1007362. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007362

David Sweatt J. The epigenetic basis of individuality. Current Opinion in Behavioral Sciences [Internet]. 1 de febrero de 2019 [citado 3 de octubre de 2019];25:51-6. Disponible en: http://www.sciencedirect.com/science/article/pii/S2352154618300500

Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nature Reviews Genetics [Internet]. octubre de 2016 [citado 28 de septiembre de 2019];17(10):630-41. Disponible en: https://www.nature.com/articles/nrg.2016.93

Ahuja N, Sharma AR, Baylin SB. Epigenetic Therapeutics: A New Weapon in the War Against Cancer. Annual Review of Medicine [Internet]. 2016 [citado 28 de septiembre de 2019];67(1):73-89. Disponible en: https://doi.org/10.1146/annurev-med-111314-035900

Klutstein M, Moss J, Kaplan T, Cedar H. Contribution of epigenetic mechanisms to variation in cancer risk among tissues. Proc Natl Acad Sci U S A [Internet]. 28 de febrero de 2017 [citado 6 de octubre de 2017];114(9):2230-4. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338490/

Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Seminars in Cancer Biology [Internet]. 1 de agosto de 2018 [citado 28 de septiembre de 2019];51:149-59. Disponible en: http://www.sciencedirect.com/science/article/pii/S1044579X17300536

Kuss-Duerkop SK, Westrich JA, Pyeon D. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis. Viruses [Internet]. 13 de febrero de 2018 [citado 6 de julio de 2019];10(2). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850389/

Kagohara LT, Stein-O’Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, et al. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics [Internet]. 11 de agosto de 2017 [citado 15 de junio de 2018];17(1):49-63. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860551/pdf/elx018.pdf

Soto D, Song C, McLaughlin-Drubin ME. Epigenetic alterations in human papillomavirus- associated cancers. Viruses [Internet]. 2017;9(9):248-58. Disponible en: https://www.mdpi.com/1999-4915/9/9/248/htm

Jiang J, Zhao L-J, Zhao C, Zhang G, Zhao Y, Li J-R, et al. Hypomethylated CpG around the transcription start site enables TERT expression and HPV16 E6 regulates TERT methylation in cervical cancer cells - Gynecologic Oncology. Gynecologic Oncology [Internet]. 2012 [citado 4 de octubre de 2019];124(3):534-41. Disponible en: https://www.gynecologiconcology-online.net/article/S0090-8258(11)00941-3/pdf

Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci [Internet]. 12 de marzo de 2018 [citado 1 de octubre de 2019];25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846307/

Boda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, et al. Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol [Internet]. 29 de enero de 2018 [citado 6 de julio de 2019];52(3):637-55. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807043/

Las alteraciones epigenéticas en la progresión del cáncer | Gaceta Mexicana de Oncología [Internet]. [citado 26 de julio de 2019]. Disponible en: https://www.elsevier.es/es-revista-gaceta-mexicana-oncologia-305-articulo-las-alteraciones-epigeneticas-progresion-del-X1665920114579068

Dawson MA, Kouzarides T. Cancer Epigenetics: From Mechanism to Therapy. Cell [Internet]. 6 de julio de 2012 [citado 19 de agosto de 2019];150(1):12-27. Disponible en: https://www.cell.com/cell/abstract/S0092-8674(12)00762-3

Hsu Y-W, Huang R-L, Su P-H, Chen Y-C, Wang H-C, Liao C-C, et al. Genotype-specific methylation of HPV in cervical intraepithelial neoplasia. J Gynecol Oncol [Internet]. julio de 2017 [citado 20 de enero de 2019];28(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447154/

von Knebel Doeberitz M, Prigge E-S. Role of DNA methylation in HPV associated lesions. Papillomavirus Research [Internet]. 1 de junio de 2019 [citado 30 de septiembre de 2019];7:180-3. Disponible en: http://www.sciencedirect.com/science/article/pii/S2405852119300308

Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. Mutation Research/Reviews in Mutation Research [Internet]. 1 de abril de 2017 [citado 1 de octubre de 2019];772:36-50. Disponible en: http://www.sciencedirect.com/science/article/pii/S1383574216301107

Kgatle MM, Spearman CW, Kalla AA, Hairwadzi HN. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations. Oxid Med Cell Longev [Internet]. 2017 [citado 6 de octubre de 2017];2017. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504953/

Nicole LS, Ito Y, Jha S. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int J Mol Sci [Internet]. 2018;19(6):1706. Disponible en: https://www.mdpi.com/1422-0067/19/6/1706/htm

Yin F, Wang N, Wang S, Yu F, Sun X, Yu X, et al. HPV16 oncogenes E6 or/and E7 may influence the methylation status of RASSFIA gene promoter region in cervical cancer cell line HT-3. Oncol Rep [Internet]. abril de 2017;37(4):2324-34. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28260046

Liu S, Chang W, Jin Y, Feng C, Wu S, He J, et al. The function of histone acetylation in cervical cancer development. Biosci Rep. 30 de abril de 2019;39(4).

He H, Liu X, Liu Y, Zhang M, Lai Y, Hao Y, et al. Human Papillomavirus E6/E7 and Long Noncoding RNA TMPOP2 Mutually Upregulated Gene Expression in Cervical Cancer Cells. J Virol. 15 de abril de 2019;93(8).

McLaughlin-Drubin ME, Park D, Munger K. Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci U S A [Internet]. 1 de octubre de 2013 [citado 24 de octubre de 2019];110(40):16175-80. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791710/

Hyland PL, McDade SS, McCloskey R, Dickson GJ, Arthur K, McCance DJ, et al. Evidence for alteration of EZH2, BMI1, and KDM6A and epigenetic reprogramming in human papillomavirus type 16 E6/E7-expressing keratinocytes. J Virol. noviembre de 2011;85(21):10999-1006.

Sharma S, Mandal P, Sadhukhan T, Roy Chowdhury R, Ranjan Mondal N, Chakravarty B, et al. Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis. Sci Rep. 8 de julio de 2015;5:11724.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Carlos Román-Collazo, María Joseline Merchán-Jara, Diego Andrade-Campoverde, Erika Campoverde-Valverde, Lourdes Guaillazaca -Matute

Downloads

Download data is not yet available.