Abstract
Background: obesity in people with SARS-CoV-2 represents one of the most severe conditions that has caused high peaks in mortality worldwide, due to its consequences associated with obesity. Objective: to relate obesity with SARS-CoV-2 virus infection. Method: this is a systematic review. The search for articles was from January 2020 to May 2021, in the databases: Pubmed, Science Direct and Web of Science, through search terms of the DeCS and MesH, also using Boolean operators AND, OR and NOT. Twenty-one articles met the inclusion criteria. Results: the classification of body weight by BMI was essential to determine that in obese patients (≥30 kg / m2) the incidence percentage was significant in the infection by SARS-CoV-2, being above 20%, developing complications, such as increased hospital stay, admission to the ICU, need for oxygenation, mechanical ventilation and intubation and, in other cases, considerable levels of mortality. Conclusion: obesity turns out to be a risk factor that will complicate the picture in people infected by SARS-CoV-2, through pro-inflammatory mechanisms altering the innate and adaptive immune response leading to a higher risk of infection, little effectiveness of the treatment with antivirals.
References
Dafallah A. The potential impacts of obesity on covid-19. Clin Med J R Coll physicians london. 2020;20(4):109–13.
Kwok S, Adam S. Obesity: a critical risk factor in the covid‐19 pandemic. Clin Obes. 2020;10(6):1–11.
Dhanraj P, Pitere R. The impact of obesity on the cellular and molecular pathophysiology of covid-19. South african Med J. 2021;111(3):211–4.
Parameswaran K, Soth M. Altered respiratory physiology in obesity. Can Respir J. 2006;13(4):203–10.
Ji W, Lee R. Overweight and obesity are risk factors for coronavirus disease 2019: a propensity scorematched case-control study. Endocrinol Metab. 2021;36(1):196– 200.
Rychter A, Zawada A. Should patients with obesity be more afraid of covid-19? Obes Rev. 2020;21(9):1–8.
Aghili S, Ebrahimpur M. Obesity in covid-19 era, implications for mechanisms, comorbidities, and prognosis: a review and metaanalysis. Int J Obes. 2021;45(5):998–1016.
Leeuw A, Luttikhuis M. Obesity and its impact on covid-19. J Mol Med. 2021;99(6):17.
Rossi A, Gottin L. Obesity as a risk factor for unfavourable outcomes in critically ill patients affected by covid 19. Nutr Metab Cardiovasc Dis. 2020;31(7):8.
Cuschieri S, Grech S. Obesity population at risk of COVID-19 complications. Glob Heal Epidemiol genomics. 2020;6(1):6.
Abu-Farha M, Al-Mulla F. Impact of diabetes in patients diagnosed with covid-19. Front Immunol. 2020;11(1):1–11.
Luzi L, Radaelli M. Influenza and obesity: its odd relationship and the lessons for covid-19 pandemic. Acta Diabetol. 2020;57(6):759–64.
Popkin B, Du S, Shekar M. Individuals with obesity and covid19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):1–17.
Atkins D. Unraveling the connection between obesity and outcomes in covid-19. Obesity. 2021;29(5):786–7.
De Bandt J, Monin C. Obesity, nutrients and the immune system in the era of covid-19. Nutrients. 2021;13(2):1–14.
Landecho M, Marin M, Recalde B. Obesity as an adipose tissue dysfunction disease and a risk factor for infections – covid-19 as a case study. Eur J Intern Med. 2020;88(5):8.
Bolsoni-Lopes A, Furieri L, AlonsoVale MIC. Obesity and covid-19: a reflection on the relationship between pandemics. Rev Gauch 14 Enferm. 2021;42(2):6.
Mentella M, Scaldaferri F, Gasbarrini A. The role of nutrition in the covid-19 pandemic. Nutrients. 2021;13(4):1–13.
Petrova D, Salamanca E. Obesity as a risk factor in covid-19: possible
mechanisms and implications. Aten primaria. 2020;52(7):496–500.
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review [Internet]. Vol. 324, JAMA - Journal of the American Medical Association. American Medical Association; 2020 [cited 2021 Jun 24]. p. 782–93. Available from: https://jamanetwork.com/
Bruno, A .; Conus, S .; Schmid, I .; Simon, H.-U. Las vías apoptóticas son inhibidas por la activación del receptor de leptina en los neutrófilos. J. Immunol. 2015 , 174 , 8090–8096.
Abella, V .; Scotece, M .; Conde, J .; Pino, J .; González-Gay, MA; Gómez-Reino, JJ La leptina en la interacción de la inflamación, el metabolismo y los trastornos del sistema inmunológico. Nat. Rev. Rheumatol. 2017 , 13 , 100–109.
Agrawal, S .; Gollapudi, S .; Su, H .; Gupta, S. La leptina activa las células B humanas para que secreten TNF-α, IL-6 e IL-10 a través de la vía de señalización JAK2 / STAT3 y p38MAPK / ERK1 / 2. J. Clin. Immunol. 2011 , 31 , 472–478.
Conde, J .; Scotece, M .; Abella, V .; López, V .; Pino, J .; Gómez-Reino, JJ Actualización sobre la leptina como inmunomodulador. Rev. Experto Clin. Immunol. 2014 , 10 , 1165-1170.
Heialy, SA; Hachim, M .; Senok, A .; Tayoun, AA; Hamoudi, R .; Alsheikh-Ali, A. Regulación de la enzima convertidora de angiotensina 2 (ACE2) en la obesidad: implicaciones para COVID-19. 2020. Disponible en línea: http://biorxiv.org/lookup/doi/10.1101/2020.04.17.046938 (consultado el 18 de Junio de 2021).
Schafer, K .; Konstantinides, S. Mecanismos que relacionan la leptina con la trombosis arterial y venosa: posibles dianas farmacológicas. Curr. Pharm. Des. 2014 , 20 , 635–640.
Andrade F, Gualberto A. The weight of obesity in immunity from influenza to covid-19. Front Cell Infect Microbiol. 2021;11(2):1–14.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Gustavo Mauricio Sánchez-Salazar, Pablo Isaías Urgiles-Siguencia , Michelle Guadalupe Pesantez-Barbecho, Roxana Estefanía Pastuizaca-Paucar