Métodos diagnósticos de caries interproximal en niños
PDF

Palabras clave

caries dental
métodos
diagnóstico
odontología pediátrica

Cómo citar

Sanmartín-Rodríguez, E., Ordoñez, P., Medina-Sotomayor, P., López-Ochoa, S., & Vasquez-Ávila, C. (2022). Métodos diagnósticos de caries interproximal en niños. Revista Estudiantil CEUS (Ciencia Estudiantil Unidad De Salud), 4(2), 15-24. Recuperado a partir de https://ceus.ucacue.edu.ec/index.php/ceus/article/view/97

ARK

http://resolve.scienceontheweb.net/ark:/89949/ceus.v4i2.97

Resumen

Objetivos: El objetivo principal de esta investigación fue establecer cuál es el mejor método de diagnóstico para caries interproximal en niños, mediante la evaluación de parámetros como la sensibilidad y especificidad de los mismos. Materiales y métodos: La metodología aplicada fue una revisión bibliográfica de estudios y documentos como revisiones sistemáticas, artículos originales, revisiones bibliográficas y artículos de casos y controles; para lo cual se realizó la búsqueda en las bases de datos de Pubmed, Scopus, Web of Science, Ebscohost, Scielo y Google Académico. Resultados: Se encontraron 172 referencias de interés, sin embargo, finalmente estuvieron incluidas 68, las cuales cumplían con todos los criterios de inclusión. Al evaluar los parámetros de sensibilidad y especificidad, el examen clínico visual presentó valores numéricos de 0.95 y 1 respectivamente, los cuales superaron los valores presentados por los métodos diagnósticos: radiografía de aleta de mordida, fluorescencia láser (Diagnodent) y Transiluminación de Imágenes con infrarrojo cercano (Diagnocam) Conclusiones: De los cuatro métodos más utilizados para evaluar caries interproximal en niños se determinó que el mejor método es el examen clínico visual, al cual se le adiciona el uso de las ligas separadoras ortodónticas, pues estas permiten lograr una mejor visibilidad en estas áreas de difícil acceso. Por lo cual este método resulta suficiente para evaluar caries interproximal.

PDF

Citas

Rathee M, Sapra A. Dental Caries Illinois: Stat Pearls Publishing; 2021. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK551699/

Moynihan P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Advances in Nutrition. 2016; 10(1): 149–156. Disponible en:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717883/

Mathur V, Dhillon J. Dental Caries: A Disease Which Needs Attention. Indian J Pediatr. 2018; 85(3): 202-206. Disponible en: https://link.springer.com/article/10.1007%2Fs12098-017-2381-6

Lucas S, Robles N, Lara E, Scougall R, Pontigo A. et al. Interproximal caries and premature tooth loss in primary dentition as risk factors for loss of space in the posterior sector: A cross-sectional study. Medicine. 2019; 98(11): 1-5. Disponible en: https://journals.lww.com/md-journal/Fulltext/2019/03150/Interproximal_caries_and_premature_tooth_loss_in.76.aspx

Salud Bucodental [Internet]. World health organization. 2022 [citado 28 enero 2022]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/oral-health

Ortega F, Guerrero A, Aliaga P. Determinantes sociales y prevalencia de la caries dental en población escolar de zonas rurales y urbanas de Ecuador. OdontoInvestigación. 2018; 4(2): 20-31. Disponible en: https://revistas.usfq.edu.ec/index.php/odontoinvestigacion/article/view/1281/1253

Pardo J, Valarezo T. Técnicas auxiliares para el diagnóstico de caries incipiente interproximal en molares deciduos de niños de 4 a 10 años. KIRU. 2018; 15(4): 159-165. Disponible en: https://www.aulavirtualusmp.pe/ojs/index.php/Rev-Kiru0/article/view/1463/1252

Baltacioglu I, Orhan K. Comparison of diagnostic methods for the early detection of interproximal caries with near-infrared light transillumination: an in vivo study. BMC oral health. 2017; 17(1): 1-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689175/pdf/12903_2017_Article_421.pdf

Takahashi N, Lee C, Da Silva J, Ohyama H, Roppongi M. et al. A comparison of early stage interproximal caries diagnosis with bitewing radiographs and periapical imaging using the consensus reference. Dento maxillo facial radiology. 2019; 48 (2): 1-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476375/pdf/dmfr.20170450.pdf

Bussaneli D, Restrepo M, Boldieri T, Albertoni T, Santos L. et al. Proximal caries lesion detection in primary teeth: does this justify the association of diagnostic methods? Lasers in Medical Science. 2015; 30(9): 2239–2244. Disponible en: https://link.springer.com/article/10.1007%2Fs10103-015-1798-2

Guiñez M, Letelier G. Especificidad y Sensibilidad de Sistema ICDAS TM versus Índice COPD en la Detección de Caries. Int. J. Odontostomat. 2020; 14(1): 12-18. Disponible en: https://scielo.conicyt.cl/pdf/ijodontos/v14n1/0718-381X-ijodontos-14-01-00012.pdf

Campus G, Cocco F, Ottolenghi L, Cagetti M. Comparison of ICDAS, CAST, Nyvad Criteria and WHO-DMFT for the detection of caries in a sample of Italian schoolchildren. International Journal of Environmental Research and Public Health. 2019; 16(21): 1-15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862073/pdf/ijerph-16-04120.pdf

Bowen W. Dental caries – not just holes in teeth! A perspective. Mol Microbiol Oral. 2016; 31 (3): 228-33. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/omi.12132

NouhzadehMalekshah S, Fekrazad R, Bargrizan M, Kalhori K. Evaluation of laser fluorescence in combination with photosensitizers for detection of demineralized lesions. Photodiagnosis and Photodynamic Therapy. 2019; 26: 300–305. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S157210001830351X

Subka S, Rodd H, Nugent Z, Deery C. In vivo validity of proximal caries detection in primary teeth, with histological validation. Int J Paediatr Dent. 2019; 29: 429–438. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/ipd.12478

Ribeiro A, Purger F, Rodrigues J, Oliveira P, Lussi A. et al. Influence of contact points on the performance of caries detection methods on approximate surfaces of primary molars: an in vivo study. Caries Research. 2015; 49 (2): 99-108. Disponible en: https://boris.unibe.ch/77059/1/Influence%20of%20Contact%20Points.pdf

Duangthip D, Chen K, Gao S, Lo E, Chu, C. Managing Early Childhood Caries with Atraumatic Restorative Treatment and Topical Silver and Fluoride Agents. International journal of environmental research and public health. 2017; 14 (10): 1-13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664705/

Gomez J. Detection and diagnosis of the early caries lesion. BMC oral health. 2015; 15 (1). Disponible en: https://link.springer.com/article/10.1186/1472-6831-15-S1-S3

Martignon S, Cortes A, Gómez S, Castiblanco G, Baquero X. et al. How Long does it Take to Examine Young Children with the Caries ICDAS System and how do they Respond? Braz. Dent. J. 2018; 29(4): 374-380. Disponible en: https://www.scielo.br/j/bdj/a/W4xkjYLzwt438hxr5jfbS9b/?lang=en&format=pdf

Bizhang M. Wollenweber N. Singh P. Danesh G. Zimmer S. Pen-type laser fluorescence device versus bitewing radiographs for caries detection on approximal surfaces. Head & Face Medicine. 2016; 12: 1-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095970/pdf/13005_2016_Article_126.pdf

Costa V, Bussaneli D, Da Silva E, Spin R, Escobar A, Loiola R. Examiner’s experience and the outcome interpretation of ICDAS and Nyvad’s system – a prospective in vitro study. Acta Odontologica Scandinavica. 2017; 75 (3): 186-190. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/00016357.2016.1277260?journalCode=iode20

Goodwin T, Devlin H, Glenny A, O’Malley L, Horner, K. Guidelines on the timing and frequency of bitewing radiography: a systematic review. British Dental Journal. 2017; 222(7): 519-526. Disponible en: https://www.nature.com/articles/sj.bdj.2017.314

Kocak N, Cengiz E. Clinical performance of clinical-visual examination, digital bitewing radiography, laser fluorescence, and near-infrared light transillumination for detection of non-cavitated proximal enamel and dentin caries. Lasers in Medical Science. 2020; 35(7): 1621-1628. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32333336/

Foster L, Boyd D, Fuge K, Stevenson A, Goad K. et al. The effect of bitewing radiography on estimates of dental caries experience among children differs according to their disease experience. BMC oral health. 2018; 18(1): 1-8. Disponible en: https://bmcoralhealth.biomedcentral.com/track/pdf/10.1186/s12903-018-0596-1.pdf

Abogazalah N, Ando M. Alternative methods to visual and radiographic examinations for approximal caries detection. Journal of Oral Science. 2017; 59(3): 315-322. Disponible en: https://www.jstage.jst.go.jp/article/josnusd/59/3/59_16-0595/_pdf/-char/en

Smitt H, Mintjes N, Hovens R, De Leeuw J, De Vries T. Severe caries are a clue for child neglect: a case report. J Med Case Reports. 2018; 12: 1-3. Disponible en: https://jmedicalcasereports.biomedcentral.com/track/pdf/10.1186/s13256-018-1639-6.pdf

Carillo C. Recursos actuales en el diagnostico de caries. Rev ADM. 2018; 75 (6): 334-339. Disponible en: https://www.medigraphic.com/pdfs/adm/od-2018/od186g.pdf

Marmaneu A, Iranzo J, Almerich T, Ortolá J, Montiel J. et al. Diagnostic validity of digital imaging fiber optic transillumination (DIFOTI) and near infrared light transillumination (NILT) for dental caries. Journal of clinical medicine. 2020; 9(2): 1-15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073697/pdf/jcm-09-00420.pdf

Menem R, Barngkgei I, Beiruti N, Al Haffar I, Joury E. The diagnostic accuracy of a laser fluorescence device and digital radiography in detecting approximal caries lesions in posterior permanent teeth: an in vivo study. Lasers Med Sci. 2017; 32: 621–628. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360861/pdf/10103_2017_Article_2157.pdf

Laitala M, Piipari L, Sämpi N, Korhonen M, Pesonen P. et al. Validity of Digital Imaging of Fiber-Optic Transillumination in Caries Detection on Proximal Tooth Surfaces. International journal of dentistry. 2017: 1-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642884/pdf/IJD2017-8289636.pdf

Patel S, Shepard W, Barros J, Streckfus C, Quock R. In VitroEvaluation of Midwest Caries ID: A Novel Light-emitting Diode for Caries Detection. Operative Dentistry. 2015; 39(6): 644–651. Disponible en: https://meridian.allenpress.com/operative-dentistry/article/39/6/644/206335/In-Vitro-Evaluation-of-Midwest-Caries-ID-A-Novel

Kühnisch J, Söchtig F, Pitchika V, Laubender R, Neuhaus K. et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Invest. 2016; 20: 821-829. Disponible en: https://boris.unibe.ch/91547/1/In%20vivo%20validation%20of%20near-infrared%20light%20transillumination%20for%20interproximal%20dentin%20caries%20detection..pdf

Ozsevik A, Kararslan E, Aktan A, Bozdemir E, Cebe F. et al. Effect of Different Contact Materials on Approximal Caries Detection by Laser Fluorescence and Light-Emitting Diode Devices. Photomedicine and Laser Surgery. 2015; 33(10): 492–497. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26352346/

Neuhaus K, Ciucchi P, Rodrigues J, Hug I, Emerich M. et al. Diagnostic performance of a new red-light LED device for approximal caries detection. Lasers Med Sci. 2015; 30(5): 1443-1447. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24906484/

Ro J, Bang J, Kim Y, Lee D, Ko C. et al. Spectral characteristics of caries autofluorescence obtained from different locations and caries severities. J. Biophotonics. 2020; 13(1): 1-11. Disponible en: https://par.nsf.gov/servlets/purl/10187669

Prakash V, Kaur J. Dental Caries: A Disease Which Needs Attention. Indian J Pediatr. 2018; 85(3): 202–206. Disponible en: https://link.springer.com/article/10.1007/s12098-017-2381-6

Wong A, Subar P, Young D. Dental caries. Advances in pediatrics. 2017; 64 (1): 307–330. Disponible en: https://www.advancesinpediatrics.com/article/S0065-3101(17)30011-7/fulltext

Uhlen M, Valen H, Karlsen L, Skaare A, Bletsa A. et al. Treatment decisions regarding caries and dental developmental defects in children - a questionnaire-based study among Norwegian dentists. BMC oral health. 2019; 19(1): 1-8. Disponible en: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-019-0744-2

Bravo S, Cruz J. Estudios de exactitud diagnóstica: Herramientas para su Interpretación. Revista Chilena de Radiología. 2015; 21(4): 158-164. Disponible en: https://scielo.conicyt.cl/pdf/rchradiol/v21n4/art07.pdf

Vizcaíno G. Importancia del cálculo de la sensibilidad, la especificidad y otros parámetros estadísticos en el uso de las pruebas de diagnóstico clínico y de laboratorio. Medicina y Laboratorio. 2017; 23(7): 365-386. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/34/27

Cortes A, Martingnon S, Qvist V, Rud K. Approximal morphology as predictor of approximal caries in primary molar teeth. Clin Oral Invest. 2018; 22(2): 951-959. Disponible en: https://link.springer.com/article/10.1007%2Fs00784-017-2174-3

Duruk G, Gurbuz T, Aksoy H. Effect of Interproximal Caries in Primary Molars on Clinical Parameters and Levels of Some Biochemical Markers in Gingival Crevicular Fluid. Clin Oral Invest. 2020; 40(2): 75-81. Disponible en: https://www.liebertpub.com/doi/10.1089/jir.2019.0072

Batalla J. Prevalencia de lesiones cariosas proximales en molares temporales según ICDAS II y su correlación con el diagnóstico radiográfico, en niños de 4 a 9 años de edad. Odontología Vital. 2016; 1(24): 61-70. Disponible en: https://www.scielo.sa.cr/pdf/odov/n24/1659-0775-odov-24-61.pdf

Alamoudi N, Khan J, El-Ashiry E, Felemban O, Bagher S. et al. Accuracy of the DIAGNOcam and bitewing radiographs in the diagnosis of cavitated proximal carious lesions in primary molars. Niger J Clin Pract. 2019; 22(11): 1576-1582. Disponible en: https://www.researchgate.net/publication/337212484_Accuracy_of_the_DIAGNOcam_and_bitewing_radiographs_in_the_diagnosis_of_cavitated_proximal_carious_lesions_in_primary_molars

Ladewig N, Camargo L, Tedesco T, Floriano I, Gimenez T. et al. Management of dental caries among children: a look at the cost-effectiveness. Expert Review of Pharmacoeconomics & Outcomes Research. 2018; 18(2): 127-134. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/14737167.2018.1414602?journalCode=ierp20

Shakeri T, Ebrahimpour A, Hadian H. Diagnostic accuracy of Digital Bite Wing radiography in interproximal carious lesion detection of posterior teeth. Int J Med Res Health Sci. 2016; 5(11): 290-293. Disponible en: https://www.ijmrhs.com/medical-research/diagnostic-accuracy-of-digital-bite-wing-radiography-in-interproximal-carious-lesion-detection-of-posterior-teeth.pdf

Eun-Soo K, Eun-Song L, Si-Mook K, Eun-Ha J, De Josselin E. et al. A new screening method to detect proximal dental caries using fluorescence imaging. Photodiagnosis and Photodynamic Therapy. 2017; 20: 257-262. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1572100017303083?via%3Dihub

De Souza L, Cancio V, Tostes M. Accuracy of pen-type laser fluorescence device and radiographic methods in detecting approximal carious lesions in primary teeth - an in vivo study. International Journal of Paediatric Dentistry. 2018; 28(5): 472-480. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29968339/

Gupta N, Sandhu M, Sachdev V, Jhingan P. Comparison of Visual Examination and Magnification with DIAGNOdent for Detection of Smooth Surface Initial Carious Lesion—Dry and Wet Conditions. International Journal of Clinical Pediatric Dentistry. 2019; 12(1): 37–41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710936/pdf/ijcpd-12-37.pdf

Paris S, Schwendicke F, Soviero V, Meyer-Lueckel H. Accuracy of tactile assessment in order to detect proximal cavitation of caries lesions in vitro. Clin Oral Invest. 2019; 23(7): 2907–2912. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30612243/

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.

Derechos de autor 2022 Estefanía Sanmartín-Rodríguez, Paola Ordoñez, Priscilla Medina-Sotomayor, Sebastián López-Ochoa, Camila Vasquez-Ávila

Descargas

La descarga de datos todavía no está disponible.