Diagnostic methods of interproximal caries in children
PDF (Español (España))

Keywords

dental caries
methods
diagnosis
pediatric dentistry

How to Cite

Sanmartín-Rodríguez, E., Ordoñez, P., Medina-Sotomayor, P., López-Ochoa, S., & Vasquez-Ávila, C. (2022). Diagnostic methods of interproximal caries in children. Revista Estudiantil CEUS (Ciencia Estudiantil Unidad De Salud), 4(2), 15-24. Retrieved from https://ceus.ucacue.edu.ec/index.php/ceus/article/view/97

ARK

http://resolve.scienceontheweb.net/ark:/89949/ceus.v4i2.97

Abstract

Aims: The main objective of this research was to establish which is the best diagnostic method for interproximal caries in children, by evaluating parameters such as their sensitivity and specificity. Materials and methods: The methodology applied was a bibliographic review of studies and documents such as systematic reviews, original articles, bibliographic reviews and case-control articles; for which a search was carried out in the databases of Pubmed, Scopus, Web of Science, EBSCOhost, Scielo and Google Scholar. Results: 172 references of interest were found, however, finally 68 were included, which met all the inclusion criteria. When evaluating the sensitivity and specificity parameters, the visual clinical examination presented numerical values ​​of 0.95 and 1 respectively, which exceeded the values ​​presented by the diagnostic methods: bitewing radiography, laser fluorescence (Diagnodent) and Image Transillumination with Near infrared (Diagnocam). Conclusions: Of the four most used methods to evaluate interproximal caries in children, it was determined that the best method is the visual clinical examination to which the use of orthodontic separating bands is added, since these allow better visibility in these areas of difficult access. Therefore, this method is sufficient to evaluate interproximal caries.

PDF (Español (España))

References

Rathee M, Sapra A. Dental Caries Illinois: Stat Pearls Publishing; 2021. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK551699/

Moynihan P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Advances in Nutrition. 2016; 10(1): 149–156. Disponible en:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717883/

Mathur V, Dhillon J. Dental Caries: A Disease Which Needs Attention. Indian J Pediatr. 2018; 85(3): 202-206. Disponible en: https://link.springer.com/article/10.1007%2Fs12098-017-2381-6

Lucas S, Robles N, Lara E, Scougall R, Pontigo A. et al. Interproximal caries and premature tooth loss in primary dentition as risk factors for loss of space in the posterior sector: A cross-sectional study. Medicine. 2019; 98(11): 1-5. Disponible en: https://journals.lww.com/md-journal/Fulltext/2019/03150/Interproximal_caries_and_premature_tooth_loss_in.76.aspx

Salud Bucodental [Internet]. World health organization. 2022 [citado 28 enero 2022]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/oral-health

Ortega F, Guerrero A, Aliaga P. Determinantes sociales y prevalencia de la caries dental en población escolar de zonas rurales y urbanas de Ecuador. OdontoInvestigación. 2018; 4(2): 20-31. Disponible en: https://revistas.usfq.edu.ec/index.php/odontoinvestigacion/article/view/1281/1253

Pardo J, Valarezo T. Técnicas auxiliares para el diagnóstico de caries incipiente interproximal en molares deciduos de niños de 4 a 10 años. KIRU. 2018; 15(4): 159-165. Disponible en: https://www.aulavirtualusmp.pe/ojs/index.php/Rev-Kiru0/article/view/1463/1252

Baltacioglu I, Orhan K. Comparison of diagnostic methods for the early detection of interproximal caries with near-infrared light transillumination: an in vivo study. BMC oral health. 2017; 17(1): 1-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689175/pdf/12903_2017_Article_421.pdf

Takahashi N, Lee C, Da Silva J, Ohyama H, Roppongi M. et al. A comparison of early stage interproximal caries diagnosis with bitewing radiographs and periapical imaging using the consensus reference. Dento maxillo facial radiology. 2019; 48 (2): 1-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476375/pdf/dmfr.20170450.pdf

Bussaneli D, Restrepo M, Boldieri T, Albertoni T, Santos L. et al. Proximal caries lesion detection in primary teeth: does this justify the association of diagnostic methods? Lasers in Medical Science. 2015; 30(9): 2239–2244. Disponible en: https://link.springer.com/article/10.1007%2Fs10103-015-1798-2

Guiñez M, Letelier G. Especificidad y Sensibilidad de Sistema ICDAS TM versus Índice COPD en la Detección de Caries. Int. J. Odontostomat. 2020; 14(1): 12-18. Disponible en: https://scielo.conicyt.cl/pdf/ijodontos/v14n1/0718-381X-ijodontos-14-01-00012.pdf

Campus G, Cocco F, Ottolenghi L, Cagetti M. Comparison of ICDAS, CAST, Nyvad Criteria and WHO-DMFT for the detection of caries in a sample of Italian schoolchildren. International Journal of Environmental Research and Public Health. 2019; 16(21): 1-15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862073/pdf/ijerph-16-04120.pdf

Bowen W. Dental caries – not just holes in teeth! A perspective. Mol Microbiol Oral. 2016; 31 (3): 228-33. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/omi.12132

NouhzadehMalekshah S, Fekrazad R, Bargrizan M, Kalhori K. Evaluation of laser fluorescence in combination with photosensitizers for detection of demineralized lesions. Photodiagnosis and Photodynamic Therapy. 2019; 26: 300–305. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S157210001830351X

Subka S, Rodd H, Nugent Z, Deery C. In vivo validity of proximal caries detection in primary teeth, with histological validation. Int J Paediatr Dent. 2019; 29: 429–438. Disponible en: https://onlinelibrary.wiley.com/doi/10.1111/ipd.12478

Ribeiro A, Purger F, Rodrigues J, Oliveira P, Lussi A. et al. Influence of contact points on the performance of caries detection methods on approximate surfaces of primary molars: an in vivo study. Caries Research. 2015; 49 (2): 99-108. Disponible en: https://boris.unibe.ch/77059/1/Influence%20of%20Contact%20Points.pdf

Duangthip D, Chen K, Gao S, Lo E, Chu, C. Managing Early Childhood Caries with Atraumatic Restorative Treatment and Topical Silver and Fluoride Agents. International journal of environmental research and public health. 2017; 14 (10): 1-13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664705/

Gomez J. Detection and diagnosis of the early caries lesion. BMC oral health. 2015; 15 (1). Disponible en: https://link.springer.com/article/10.1186/1472-6831-15-S1-S3

Martignon S, Cortes A, Gómez S, Castiblanco G, Baquero X. et al. How Long does it Take to Examine Young Children with the Caries ICDAS System and how do they Respond? Braz. Dent. J. 2018; 29(4): 374-380. Disponible en: https://www.scielo.br/j/bdj/a/W4xkjYLzwt438hxr5jfbS9b/?lang=en&format=pdf

Bizhang M. Wollenweber N. Singh P. Danesh G. Zimmer S. Pen-type laser fluorescence device versus bitewing radiographs for caries detection on approximal surfaces. Head & Face Medicine. 2016; 12: 1-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095970/pdf/13005_2016_Article_126.pdf

Costa V, Bussaneli D, Da Silva E, Spin R, Escobar A, Loiola R. Examiner’s experience and the outcome interpretation of ICDAS and Nyvad’s system – a prospective in vitro study. Acta Odontologica Scandinavica. 2017; 75 (3): 186-190. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/00016357.2016.1277260?journalCode=iode20

Goodwin T, Devlin H, Glenny A, O’Malley L, Horner, K. Guidelines on the timing and frequency of bitewing radiography: a systematic review. British Dental Journal. 2017; 222(7): 519-526. Disponible en: https://www.nature.com/articles/sj.bdj.2017.314

Kocak N, Cengiz E. Clinical performance of clinical-visual examination, digital bitewing radiography, laser fluorescence, and near-infrared light transillumination for detection of non-cavitated proximal enamel and dentin caries. Lasers in Medical Science. 2020; 35(7): 1621-1628. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32333336/

Foster L, Boyd D, Fuge K, Stevenson A, Goad K. et al. The effect of bitewing radiography on estimates of dental caries experience among children differs according to their disease experience. BMC oral health. 2018; 18(1): 1-8. Disponible en: https://bmcoralhealth.biomedcentral.com/track/pdf/10.1186/s12903-018-0596-1.pdf

Abogazalah N, Ando M. Alternative methods to visual and radiographic examinations for approximal caries detection. Journal of Oral Science. 2017; 59(3): 315-322. Disponible en: https://www.jstage.jst.go.jp/article/josnusd/59/3/59_16-0595/_pdf/-char/en

Smitt H, Mintjes N, Hovens R, De Leeuw J, De Vries T. Severe caries are a clue for child neglect: a case report. J Med Case Reports. 2018; 12: 1-3. Disponible en: https://jmedicalcasereports.biomedcentral.com/track/pdf/10.1186/s13256-018-1639-6.pdf

Carillo C. Recursos actuales en el diagnostico de caries. Rev ADM. 2018; 75 (6): 334-339. Disponible en: https://www.medigraphic.com/pdfs/adm/od-2018/od186g.pdf

Marmaneu A, Iranzo J, Almerich T, Ortolá J, Montiel J. et al. Diagnostic validity of digital imaging fiber optic transillumination (DIFOTI) and near infrared light transillumination (NILT) for dental caries. Journal of clinical medicine. 2020; 9(2): 1-15. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073697/pdf/jcm-09-00420.pdf

Menem R, Barngkgei I, Beiruti N, Al Haffar I, Joury E. The diagnostic accuracy of a laser fluorescence device and digital radiography in detecting approximal caries lesions in posterior permanent teeth: an in vivo study. Lasers Med Sci. 2017; 32: 621–628. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360861/pdf/10103_2017_Article_2157.pdf

Laitala M, Piipari L, Sämpi N, Korhonen M, Pesonen P. et al. Validity of Digital Imaging of Fiber-Optic Transillumination in Caries Detection on Proximal Tooth Surfaces. International journal of dentistry. 2017: 1-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642884/pdf/IJD2017-8289636.pdf

Patel S, Shepard W, Barros J, Streckfus C, Quock R. In VitroEvaluation of Midwest Caries ID: A Novel Light-emitting Diode for Caries Detection. Operative Dentistry. 2015; 39(6): 644–651. Disponible en: https://meridian.allenpress.com/operative-dentistry/article/39/6/644/206335/In-Vitro-Evaluation-of-Midwest-Caries-ID-A-Novel

Kühnisch J, Söchtig F, Pitchika V, Laubender R, Neuhaus K. et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Invest. 2016; 20: 821-829. Disponible en: https://boris.unibe.ch/91547/1/In%20vivo%20validation%20of%20near-infrared%20light%20transillumination%20for%20interproximal%20dentin%20caries%20detection..pdf

Ozsevik A, Kararslan E, Aktan A, Bozdemir E, Cebe F. et al. Effect of Different Contact Materials on Approximal Caries Detection by Laser Fluorescence and Light-Emitting Diode Devices. Photomedicine and Laser Surgery. 2015; 33(10): 492–497. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26352346/

Neuhaus K, Ciucchi P, Rodrigues J, Hug I, Emerich M. et al. Diagnostic performance of a new red-light LED device for approximal caries detection. Lasers Med Sci. 2015; 30(5): 1443-1447. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24906484/

Ro J, Bang J, Kim Y, Lee D, Ko C. et al. Spectral characteristics of caries autofluorescence obtained from different locations and caries severities. J. Biophotonics. 2020; 13(1): 1-11. Disponible en: https://par.nsf.gov/servlets/purl/10187669

Prakash V, Kaur J. Dental Caries: A Disease Which Needs Attention. Indian J Pediatr. 2018; 85(3): 202–206. Disponible en: https://link.springer.com/article/10.1007/s12098-017-2381-6

Wong A, Subar P, Young D. Dental caries. Advances in pediatrics. 2017; 64 (1): 307–330. Disponible en: https://www.advancesinpediatrics.com/article/S0065-3101(17)30011-7/fulltext

Uhlen M, Valen H, Karlsen L, Skaare A, Bletsa A. et al. Treatment decisions regarding caries and dental developmental defects in children - a questionnaire-based study among Norwegian dentists. BMC oral health. 2019; 19(1): 1-8. Disponible en: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-019-0744-2

Bravo S, Cruz J. Estudios de exactitud diagnóstica: Herramientas para su Interpretación. Revista Chilena de Radiología. 2015; 21(4): 158-164. Disponible en: https://scielo.conicyt.cl/pdf/rchradiol/v21n4/art07.pdf

Vizcaíno G. Importancia del cálculo de la sensibilidad, la especificidad y otros parámetros estadísticos en el uso de las pruebas de diagnóstico clínico y de laboratorio. Medicina y Laboratorio. 2017; 23(7): 365-386. Disponible en: https://medicinaylaboratorio.com/index.php/myl/article/view/34/27

Cortes A, Martingnon S, Qvist V, Rud K. Approximal morphology as predictor of approximal caries in primary molar teeth. Clin Oral Invest. 2018; 22(2): 951-959. Disponible en: https://link.springer.com/article/10.1007%2Fs00784-017-2174-3

Duruk G, Gurbuz T, Aksoy H. Effect of Interproximal Caries in Primary Molars on Clinical Parameters and Levels of Some Biochemical Markers in Gingival Crevicular Fluid. Clin Oral Invest. 2020; 40(2): 75-81. Disponible en: https://www.liebertpub.com/doi/10.1089/jir.2019.0072

Batalla J. Prevalencia de lesiones cariosas proximales en molares temporales según ICDAS II y su correlación con el diagnóstico radiográfico, en niños de 4 a 9 años de edad. Odontología Vital. 2016; 1(24): 61-70. Disponible en: https://www.scielo.sa.cr/pdf/odov/n24/1659-0775-odov-24-61.pdf

Alamoudi N, Khan J, El-Ashiry E, Felemban O, Bagher S. et al. Accuracy of the DIAGNOcam and bitewing radiographs in the diagnosis of cavitated proximal carious lesions in primary molars. Niger J Clin Pract. 2019; 22(11): 1576-1582. Disponible en: https://www.researchgate.net/publication/337212484_Accuracy_of_the_DIAGNOcam_and_bitewing_radiographs_in_the_diagnosis_of_cavitated_proximal_carious_lesions_in_primary_molars

Ladewig N, Camargo L, Tedesco T, Floriano I, Gimenez T. et al. Management of dental caries among children: a look at the cost-effectiveness. Expert Review of Pharmacoeconomics & Outcomes Research. 2018; 18(2): 127-134. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/14737167.2018.1414602?journalCode=ierp20

Shakeri T, Ebrahimpour A, Hadian H. Diagnostic accuracy of Digital Bite Wing radiography in interproximal carious lesion detection of posterior teeth. Int J Med Res Health Sci. 2016; 5(11): 290-293. Disponible en: https://www.ijmrhs.com/medical-research/diagnostic-accuracy-of-digital-bite-wing-radiography-in-interproximal-carious-lesion-detection-of-posterior-teeth.pdf

Eun-Soo K, Eun-Song L, Si-Mook K, Eun-Ha J, De Josselin E. et al. A new screening method to detect proximal dental caries using fluorescence imaging. Photodiagnosis and Photodynamic Therapy. 2017; 20: 257-262. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1572100017303083?via%3Dihub

De Souza L, Cancio V, Tostes M. Accuracy of pen-type laser fluorescence device and radiographic methods in detecting approximal carious lesions in primary teeth - an in vivo study. International Journal of Paediatric Dentistry. 2018; 28(5): 472-480. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29968339/

Gupta N, Sandhu M, Sachdev V, Jhingan P. Comparison of Visual Examination and Magnification with DIAGNOdent for Detection of Smooth Surface Initial Carious Lesion—Dry and Wet Conditions. International Journal of Clinical Pediatric Dentistry. 2019; 12(1): 37–41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710936/pdf/ijcpd-12-37.pdf

Paris S, Schwendicke F, Soviero V, Meyer-Lueckel H. Accuracy of tactile assessment in order to detect proximal cavitation of caries lesions in vitro. Clin Oral Invest. 2019; 23(7): 2907–2912. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30612243/

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Estefanía Sanmartín-Rodríguez, Paola Ordoñez, Priscilla Medina-Sotomayor, Sebastián López-Ochoa, Camila Vasquez-Ávila

Downloads

Download data is not yet available.